
Automatic Parallelization Tool Efficiency:

FPP/Atexpert Case Studies

Robert J. Bergeron 1

Report RND-93-011 June 1993

NAS Systems Development Branch

NAS Systems Division

NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035-1000

Abstract

Automatic Parallelization Tool Efficiency:
FPP/Atexpert Case Studies

Robert J.Bergeron
Computer SciencesCorporation
NASA Ames ResearchCenter
Moffett Field, CA 94035, USA

This paper presents several synthetic Fortran codes for testing the

ability of automatic parallelizers to generate efficient parallel code. The

codes typify sequential solution techniques currently in use at NAS and

represent the types of algorithms that automatic parallelizers will be

required to analyze and decompose. The Cray automatic parallelizer

FPP performed well on codes containing explicitly parallel algorithms,
but required user intervention to assist in vectorized relaxation

schemes. The inability of FPP to expose parallelism at a level higher

than loop level reduced the parallel performance of relaxation and ADI

schemes. The Cray utility atexpert consistently diagnosed the causes for

poorer-than-expected parallel performance.

1.0 Introduction

The current limits on technology indicate that future high speed

computer systems will employ multiple processors, operating in

parallel, to solve computationally-intensive problems. Efficient

utilization of such machines will require a recasting of current highly

vectorized programs into highly parallel programs. The past success of

automatic vectorization has motivated the development of automatic

parallelization tools to reduce the user effort in constructing parallel

programs from vectorized programs. Automatic parallelization in the

current context means the rewriting of a serial Fortran program for

execution on multiple processors using only directives inserted into

the code before compilation. Automatic parallelization should help

users to construct code for task allocation, CPU synchronization, and

interprocessor communication. Such constructs can apply to a coarse-

grained high-level partition, corresponding to subroutine-sized tasks,

or to a fine-grained, low-level partition, corresponding to loop-sized
tasks.

Analysts at the NASA Ames Research Center's Numerical

Aerodynamics Simulation (NAS) Facility have been evaluating

automatic parallelization tools for some time, beginning with the

evaluation of loop-level tools on shared-memory machines (Chen and

2

Pase,1991). Because these tools seek only to enable the parallel

execution of DO-loops, the source program retains its logical structure.

Processors executing loop-level parallel work synchronize at the end of

the DO-loop and perform a relatively small amount of work between

synchronization points. The limited amount of work performed

between synchronization constitutes fine-grained parallelism.

Evaluation of automatic tools for highly parallel machines has not yet

occurred. Highly parallel machines have distributed memories and

require coarser-grained parallel execution to amortize communication

overhead. Coarser-grained parallel execution requires substantial

rewriting of source programs to enable independent execution of tasks

larger than those performed by DO-loops. Code generated by automatic

tools for this purpose can assume many forms, depending upon the

target parallel architecture and the transformation rules internal to the

tool. Evaluation of coarse-grained tools needs at least one example of a

manual source transformation for comparison against tool-generated
code.

1.1 The Parallel Suite

This report presents the results of automatic loop-level

transformations on a suite of five Fortran codes executing on a shared

memory machine. The codes, employing vectorized numerical

methods, typify solution techniques which NAS users might submit

for parallelization by an automatic preprocessor. A subsequent report

will present the results of higher-level transformations on these same

sources for execution on a distributed memory machine.

The parallel suite includes the following kernels:

• Successive OverRelaxation (SOR) algorithm in a cube geometry,

• PARAllel Cyclic Reduction algorithm (PARACR) solving a two-

dimensional tridiagonal system,

• Alternating Direction Implicit (ADI) algorithm in a planar geometry,

• MultiGRid (MGR) algorithm in a cube geometry, and

• Shallow Water Model (SWM) providing an explicit solution to the

two-dimensional mass and momentum equations treating wave
motion.

The numerical solution of partial differential equations provides the

basis for three of the algorithms in the suite: SOR, ADI, and MGR. The

basic problem, the solution of Poisson's equation, admits a variety of

highly parallel solution algorithms. The second algorithm, PARACR,

employs the cyclic reduction method to solve the tridiagonal system

arising from the finite-difference approximation to Poisson's equation.

A modification (Hockney and Jesshope, 1988) to the standard odd-even

algorithm increases the parallelism by performing all phases of the

reduction in parallel. The fifth algorithm, SWM, provides the solution

to the mass and momentum equations on a two-dimensional,

3

Cartesian grid. The shallow water algorithm performs the same set of

operations on each of the grid points and has no conditional
statements.

Problem sizes for the base case versions reflect a grid containing about

1 million points. While this size has been a historical standard for NAS

computational fluid dynamics codes (Peterson and Balhaus, 1987),

current problems seem to be about a factor of three larger and future

problems will be even larger. Accordingly, the report also provides

performance data for a case eight times as large as the base case to assess

the effects of size on parallel performance.

1.2 The Cray Environment

All calculations reported here were performed on the NAS Cray
Y-MP, a 6 nanosecond 8-CPU 256 MW vector computer. The CPUs of

the Y-MP are tightly coupled through a shared main memory and sets

of shared registers. Loop-level parallelism exploits the high-speed

communication available with these shared registers to achieve

parallelism at the DO-loop level (Cray, 1991).

Cray's automatic parallelization tool, the Fortran PreProcessor (FPP),

performs the automatic distribution of loop iterations to multiple

processors using the original Fortran source as input. FPP transforms

loop structures into parallel regions by prefixing the structures with

loop work distribution commands such as "DO ALL PARALLEL". FPP

also prefixes the structures with directives indicating the scope of loop

variables, i.e., statements indicating whether a variable can be shared

among the processors or whether the variable must be used only by the

CPU performing a particular loop iteration. An implicit

synchronization occurs at the end of all parallel code regions to allow

the multiple CPUs proper access to the shared memory. FPP also

provides some interprocedural parallelization capability through its

expansion of user-selected subroutines. To facilitate FPP's recognition

of data dependencies and its analysis of loop subscripting, the codes in

the suite, while performing efficiently on the Y-MP, have been only

weakly optimized. FPP version 5.0, release 3.03M3 in conjunction with

CFT77, version 5.0, created the executables for the first four codes. An

earlier version of FPP, version 4.0, release 2.26B3, created the SWM

executables.

Cray also provides the atexpert utility (Cray, 1990) to help users

improve parallel performance. This tool indicates how the system

executes the serial and parallel regions of the FPP-generated code.

Atexpert provides performance and overhead measurements at the

program, subroutine and loop-level. The graphical output format

employed by atexpert allows the user to obtain a clear picture of parallel

performance.

The following sections discuss the technique for evaluating

effectiveness of automatic tools, the performance of each of the five

codes, and the performance of FPP. Since the codes contain extensive

comments describing the actual implementation of the algorithm into

Fortran, the discussion of the individual codes emphasizes the

parallelism contained therein and an evaluation of the Cray automatic

parallelization tool.

5

2.0 Definitions and Evaluation Procedure

The following section describes some of the terms used to measure

parallelism and provides a basis for comparing the source code

parallelism with the parallelism extracted by FPP.

2.1 Basic Definitions

The figure of merit for parallel performance is speedup, defined as the

ratio of the elapsed time for the code executing on one CPU to the

elapsed time for the code executing on a specific number of CPUs. Since

a major purpose of the report is FPP evaluation, comparisons will be

made using the FPP-generated code run on one CPU and N CPUs. As

the original code does not provide the basis for single CPU timings,

these comparisons made on this basis do not reflect algorithmic or

hardware performance (Bailey, 1992). The performance of these codes

should not be taken as measures of the parallel speedup over the best

Y-MP implementation.

The efficiency, defined as the speedup divided by the number of CPUs

which execute the problem, measures how effectively the program

utilizes the hardware; an efficiency close to unity indicates a very

effective use of computing resources. The efficiency generally tends to

decrease as more processors are brought to bear on a given problem due

to contention for shared resources, extra time required to communicate

between processors, and the inability of practical algorithms to keep an

arbitrary number of processors profitably busy. Parallel efficiencies as

low as 0.7 have been quoted as adequate in the literature (Cvetanovic et

al., 1990).

2.2 Source Parallelism

A convenient measure of source parallelism involves the assumption

that all vectorized operations can be executed in parallel. This measure

is strongly hardware dependent because implementations of CPU

synchronization and communication will determine the minimum

amount of work able to benefit from parallel execution. The Y-MP

architecture implements synchronization and communication

efficiently and many vector loops will benefit from parallel execution.

Efficient transformation of vector operations into parallel operations

requires the vendor's software to expose those vector constructs which

can benefit from parallel execution on the vendor's hardware. Some

architectures may execute loops in vector mode on one CPU more

efficiently than on N CPUs. FPP has internal criteria which select only

those loops benefitting from parallel execution.

6

The assumption that all vectorized operations can be parallelized

allows an expression for the relationship between the speedup and the

measured vectorization. Let fv denote the fraction of program

operations (including memory) executed in vector mode and fs denote

the fraction of operations executed in scalar mode. The maximum

speedup, S, will be:

1

S = fs + fv/NCPU (1)

This maximum speedup calculation, based on the source parallelism

contained in the vectorized work, assumes that all vector loops execute

in parallel. This calculation assumes that the non-vector, i.e., scalar,

work cannot be parallelized. In this report, hardware operation counts

will provide fv and wall clock timings will provide a measured

speedup. If measured speedup is close to the maximum speedup, then

FPP will have done a very good job of automatic parallelization.

FPP will try to optimize a code before parallelizing it and sometimes

the optimizations and additional scalar code introduced by FPP will
change the above fractions. Therefore, the execution time of the

parallel code generated by FPP on one CPU provided the basis for

determining the fraction of vector and scalar code. This measurement

excludes some of the overhead associated with parallelism, i.e., the

effort spent testing for permission to execute DO-loops on multiple
CPUs.

Architectures without vector hardware may require runtime profiling

to obtain the amounts of time spent in single processor execution and

parallel execution for comparison of source parallelism and generated
parallelism.

2.3 Generated Parallelism

The parallel performance of a code produced with an automatic

parallelization tool can help to determine the amount of parallelism

generated by the tool. A simple measure of the fraction of code, f,

executed in serial mode can be defined implicitly as (Karp and Flatt,
1989):

T(1)*(1-f)
T(p) = T(1)*f + (2)

P

where T(p) denotes the elapsed time on p processors and T(1) denotes

the elapsed time on one processor. The parallel fraction is 1-f. This

formula assumes that the operating system can distribute an equal

amount of work to each of the available processors, i.e., perfect load

balancing. The formula also neglects the amount of CPU time required

7

for synchronization. Application of the formula to a vector architecture

requires that the vector lengths be sufficiently long to maintain vector

performance after the decomposition of DO-loops reduces these lengths

by a factor of NCPUs. The report will discuss this aspect and also

employ measured single and multiple processor elapsed times to

calculate the parallel and serial code fractions.

Thus (1) gives a relation between the measured source parallelism

and the maximum, or predicted, speedup and (2) gives a relation

between the tool-generated parallelism and the measured, or effective,

speedup. Comparison of the predicted parallelism to the effective

parallelism will provide an estimate of tool effectiveness.

2.4 Hardware Measurements

The Cray Hardware Performance Monitor (Cray, 1990) measures

several quantities which help to explain code performance. One of

these is the hardware vector length. The Cray CPU processes vectors in

lengths of 64, which is the maximum hardware length for vector

instructions. The Hardware Performance Monitor (HPM) reports a

weighted average vector length; vector lengths approaching 64 indicate

efficient use of the vector units. Another term, "program vector

length", denotes the number of iterations in the dominant vector loops

for each program.

The HPM also provides rate of both floating point operations and

memory operations. For a given algorithm, the ratio of these two

quantities indicates the magnitude of the overhead in terms of

memory accesses.

3.0 Successive OverRelaxation Algorithm

3.1 Code Description

NAS users employ the Successive OverRelaxation (SOR) algorithm in

advanced formulations involving fluid dynamics on unstructured

grids and the aerodynamics of the Space Shuttle (NASA, 1990). The

SOR is a Gauss-Seidel iteration which must visit the grid points in a

sequential order. The new grid point value, computed as the average of

the values at surrounding grid points, replaces the old value as soon as

it is computed. The immediate replacement creates a problem for

vectorization and parallelization because the iterations of the DO-loop

performing the calculation are recursive. (An iteration of a DO-loop is

recursive if it has a data dependency on the previous iteration.)

Red/black ordering of grid points in a checkerboard fashion (Lambiotte,

1975) removes the recursion because the red updates can be performed

independently of the black updates. Red/black ordering is a specific

example of "multicolor" ordering (Adams and Ortega, 1975) which

promotes parallel finite difference solutions by decoupling the local
unknowns.

In addition to vectorization, the red/black algorithm also permits a

Chebyshev sequence of relaxation factors to accelerate the convergence

of the solution. Features enhancing parallelism include the red/black

coloring of the nodes and the data parallelism of the algorithm. The

problem geometry and boundary conditions also contribute to the

parallelism by allowing application of the same operations to points

adjacent to the boundary. Termination occurs when the calculation has

reduced the norm of the residual below an input-specified fraction of
the initial residual. In this case, the residual is defined as the difference

between the discrete solution and the exact solution at each point and
the norm is defined as the sum of the absolute values of the residuals.

3.2 Code Performance

This section discusses the singletasked performance of the SOR on

several problem sizes and the parallel performance of the base case.

The goal in developing a parallel program on a vector supercomputer
is to distribute vector work to the various CPUs with a minimum

amount of time spent in processor synchronization. The standard SOR

formulation does not vectorize easily and the suite version is a

red/black SOR in which the outer loop visits all planes as the inner

loop visits first the red nodes and then the black nodes. Vectorization

of the red/black algorithm requires indirect addressing since the

procedure does not visit the nodes comprising the plane in a sequential
order.

9

Table 1 shows singletasked performance as a function of problem size.
For the base case,a cube with 128nodes per edge, the HPM indicated
vector lengths of 63 and this value denotes effective use of the vector
processor. The SOR basecasehas a program vector length of 126.
Becausethe SOR accessesarrays containing the geometry coefficients, it
displays a somewhat low FLOP-to-memory accessratio of 0.65.
Replacement of these coefficients with constant values would improve
performance by decreasing memory accesses.The code executesthe 8.6
Megaword (MW) basecasein 25 seconds,performing at 165 MFLOPS.

Table 1
Singletasked Y-MP SOR Performance

Nodes/Edge M W MFLOPS CPU seconds
32 0.2 140.6 0.1

64 1.2 156.0 1.6

100 4.2 161 0 9.4

128 8.6 165.0 25.0

256 67.3 172.3 289.1

The table shows a modest increase in vector performance with

increasing number of nodes as the computationally efficient iteration

loops dominate execution time.

With some user assistance, FPP constructed a parallel version from

the vector version described above by constructing red and black

parallel outer loops. The following fragment illustrates the FPP
construction:

10

CMIC@

CMIC@

c

cc

c

PARALLEL SHARED(NRLAST,

RIS=0

DO PARALLEL

DO 250 K = 1,254

N=128

ANORM,...

visit all internal red nodes-bottom to top

DO i00 I=I,NRLAST

RESID= RA (N+I, I+K)

2 + RB(N+I, I+K)

3 + RC(N+I, I+K)

4 + RD(N+I, I+K)

5 + RE(N+I, I+K)

6 + RF(N+I, I+K)

7 + RG(N+I, I+K)

8 - RH(N+I, I+K)

RIS=RIS + ABS@ (RESID)

R (N+I, I+K)

2

i00 CONTINUE

250 CONTINUE

CMIC@ GUARD

ANORM=ANORM+RIS

CMIC@ ENDGUARD

CMIC@ END DO

*B(NBW(N+I), I+K)

*B (NBN (N+I

*B (NBE (N+I

*B(NBS (N+I

*B(N+I,2+K

*B (N+I, K)

*R (N+I, I+K

, I+K)

, I+K)

, I+K)

:R(N+I, I+K)-

W(ITERR) *RESID*RRG(N+I, I+K)

The red outer loop visits all planes, employing an inner loop to update

only the red nodes in the plane. Parallel calculation of the red nodes is

possible because the red update uses only the black nodes, which

themselves remain constant during the red update. After updating its

red plane, each CPU enters a critical region (a region admitting only

one processor at a time) to make its contribution to the global residual.

The CPU then returns to update another red plane. CPU

synchronization occurs after the final red update. The parallel black

update and black critical region follow the final red critical region. The

release of the 5.0 version of FPP employed for the SOR, 3.0.3M5, was

unable to construct a parallel loop to obtain global maximum values,

but recent releases of FPP have remedied this deficiency.

Table 2 shows base case parallel performance on increasing numbers

of CPUs. Section 2.1 defines speedup, efficiency, and serial fraction.

11

Table 2

Parallel 8-CPU Y-MP Performance of Base Case SOR (128"'3)

NCPUS Elapsed Time Speedup Efficiency Serial Fraction
1 25.076 1.000 1.000 1.000

2 13.954 1.797 0.899 0.139

3 9.950 2.520 0.840 0.095

4 7.943 3.607 0.789 0.089

5 6.952 3.524 0.721 0.097

6 5.942 4.220 0.703 0.084

7 4.948 5.068 0.724 0.064

8 5.082 5.085 0.636 0.082

Figure 1 shows that the efficiency tends to decrease less at NCPUs

equal to 3 and 6 and even improves at NCPUS equal to 7. FPP

recognized that the base case performs 126 outer iterations and rewrote

the code accordingly. Since the number of outer iterations is divisible

by 3, 6, and 7, the CPUs can execute an integral number of outer loop

iterations, thus perfectly balancing the computational workload.

Figure 1

SOR-FPP Efficiency on Base Case

u
f-
o

LB

1.0

0.9

0.8

0.7

0.6
0

, i i I , I , I

2 4 6 8 0

Number of CPUs

Examination of code performance with the Cray utility atxpert

indicated several sources of parallel overhead which limit the

12

performance of this SOR on increasing numbers of CPUs. The

algorithm employs a global sum to determine the convergence of the

solution and this approach requires a region of code accessible to one

processor at a time. FPP creates a critical region, i.e., a region of code

which may be executed by only one CPU at a time; this region generates

overhead through its synchronization at the end of the red and black

loops.

In the 8-CPU base case, atexpert indicated additional overhead due to

CPU load imbalance. For this number of CPUs, the total work as

represented by the 126 outer iterations of the DO-loops does not parcel

into equal work for all CPUs and some CPUs idle for lack of work.

Atexpert also indicated a second source of overhead involving

memory contention since the indirect addressing required by

vectorization creates nonsequential memory access patterns.

3.3 FPP Evaluation

This section discusses the performance of FPP by showing, in Table 3,

the speedup of the 8-CPU SOR as a function of problem size. The

column "Pct Vector" provides the percent of code vectorized by the

compiler as calculated from HPM data. Use of this data in conjunction

with equation (1) presented in Section 2.1 allows an estimate of the

maximum speedup denoted in the table by "Smax'. The column

labelled "Smeas" denotes the measured speedup and the column

labelled "Pct Parallel" represents the amount of FPP-generated parallel

code as obtained by application of equation (2) as given in Section 2.1

Table 3

Parallel Y-MP Performance of the SOR

Cube Size Pct Vector Smax Smeas Pct Parallel

32 95.44 6.06 1.42 36.57

64 96.02 6.26 4.72 90.08

100 96.94 6.59 4.85 91.32

128 97.04 6.63 4.97 91.81

256 97.14 6.67 6.61 97.00

The difference between the maximum speedup based on percent of

vector operations and the measured speedup based on wall clock time

diminished as the system size increased. The measured performance of

the code increased dramatically with problem size. Relative to the 128

node cube, atexpert indicated that the largest cube size incurred smaller

overhead from load imbalance and reduced memory conflict delays.

Table 3 indicates that FPP has extracted essentially all of the parallelism

available at a cube size of 256 and FPP's version of the code performs at

over 80% efficiency. For cube sizes exceeding 64, decomposition of the

13

SOR at the DO-loop level proved to be an efficient strategy for
achieving parallelism.

14

4.0 Tridiagonal Solver--Parallel Cyclic Reduction

4.1 Code Description

Tridiagonal systems occur repeatedly in finite-difference

approximations to partial differential equations with 2nd-order

derivatives. Many of the efficient numerical algorithms solving such

systems employ some variant of Gaussian reduction and require serial

execution.The serial version of the tridiagonal solver in this suite is

called the standard (odd-even) cyclic reduction technique (Buzbee, et

al., 1970) and the parallel version is termed the parallel cyclic reduction

technique (Hockney and Jesshope, 1988). This algorithm is a highly

effective method for solving tridiagonal systems, both on a vector

computer and on a multiprocessor (Kumar, 1989). This algorithm,

arising from the solution of a 5-point finite difference operator, allows

the ADI code discussed in the next section to employ this procedure as
its solver.

The standard cyclic reduction method consists of iterations, each of

which eliminates the odd-numbered equations remaining in the

system. The procedure finally arrives at a single equation; the

algorithm then backsubstitutes through the reduced systems until the

original set of equations is solved. The algorithm consists of 5 loops.

The first loop clears (zeroes) the temporary arrays and a second loop

initializes these arrays with problem data. These are followed by an

outer loop which executes until it has reduced the system to a single

equation; its inner loop computes all the recurrence relations needed to

reduce the system by a factor of two. The final loop performs the

backsubstitution. The version in the suite allows parallel execution of

the backsubstitution and requires more floating point operations than

the odd-even cyclic reduction.

While the version in this suite requires that the matrix dimension be

a power of 2, more complicated algorithms (Sweet, 1974) do not require

this restriction. Moreover, a cutoff method (Vu and Yang, 1988)

provides a practical approach for relaxing the requirement on the

current algorithm and extending the approach to all matrix

dimensions. Each cycle of the reduction will decrease the number of

independent equations by a factor of two until the number of equations

falls below a user-specified value. At this point, the cutoff method

solves the remaining system with a Gaussian solver. The cutoff

method then proceeds with a back substitution exactly as in the power-
of-two method.

The cyclic reduction algorithm differs from the block tridiagonal

solver used in many NAS CFD codes. The cyclic reduction algorithm

solves a system with one governing equation, whereas the CFD codes

treat systems with several governing equations. The CFD block solver

15

employs a Gaussian elimination algorithm to solve the system and a

Cholesky decomposition to solve each block (Pulliam and Chausee,

1980). While three-dimensional versions of this algorithm perform

well in vector and parallel mode (Bailey et al., 1991), two-dimensional

versions display poor parallel performance. Extension of the cyclic

reduction method to the block solvers arising in two-dimensional CFD

problems should improve their parallel performance.

4.2 Code Performance

This section discusses the singletasked performance of the PARACR

and the parallel performance of the base case.

Table 4 shows singletasked performance as a function of matrix size.

The base case treats a 2"'16 linear system, i.e., a system of 65536 coupled

equations. (For comparison, a typical two-dimensional CFD problem,

100 by 100 with 4 equations per node, has about 40,000 unknowns.) The

code executes the 7.3 MW base case in 18 seconds, performing at 126

MFLOPS. The HPM indicated vector lengths exceeding 63 and a FLOP-

to-memory access ratio of 0.94. The long vector length means that the

vector startup overhead is low and the ratio of FLOP to memory access

near 1.0 means that the algorithm is computationally efficient. For 100

passes through the solver, single processor performance data are as
follows:

Table 4

Singletasked Y-MP PARACR Performance

System Size M W MFLOPS CPU seconds
2"'14 1.7 117.5 4.2

2"'15 3.5 124.6 8.4

2"'16 7.3 125.9 17.7

2"'17 15.3 122.8 38.4

2"'18 32.1 126.4 78.8

2"'19 67.2 127.2 165.0

The table shows only a small increase in vector performance with

system size. The algorithm contains an amount of scalar indexing

which increases with system size, and perhaps user optimization to

reduce this indexing work would improve code performance.

The loop structure of the parallel program constructed by FPP
followed the same order as the vector version described above. FPP

parallelized the initialization loop and arranged for parallel execution

of the inner loop iterations. FPP distributed the inner loop iterations to

the processors in groups of 64 to maximize CPU vector performance.

The clearing loop remained singletasked because it contained

insufficient work to overcome the overhead from parallel execution.

The final loop, backsubstitution, also executed in parallel. Processor

16

synchronization occurs at the end of the initialization loop, after each
of the inner loops, and at the end of the backfilling loop. In this
algorithm, the number of synchronizations depends on the number of
iterations required to reduce the system; the base caserequires 21
synchronizations per system.

Table 5 shows parallel performance for the base casePARACR on
increasing numbers of CPUs. Section 2.1 defines speedup, efficiency,
and serial fraction.

Table 5

Parallel Y-MP Performance of Base Case (2"'16) PARACR

NCPU Elapsed Time Speedup Efficiency Serial Fraction
1 16.807 1.000 1.000 1.000

2 8.843 1.901 0.950 0.052

3 6.085 2.762 0.921 0.043

4 4.672 3.597 0.899 0.037

5 3.877 4.335 0.867 0.038

6 3.304 5.087 0.848 0.036

7 2.941 5.715 0.816 0.037

8 2.719 6.181 0.773 0.042

Figure 2 shows that efficiency of the FPP-generated version of the

PARACR algorithm decreases in gradual fashion as the number of

CPUs increases. The excellent speedup and efficiency are somewhat

surprising because this algorithm is memory-intensive: HPM

measurements on the 8-CPU case revealed that the machine spent 42%

of its clock periods holding instruction issue due to memory references.

During such periods, the CPU could not issue an instruction because a

memory port was busy or a resource such as a register was reserved by
another instruction.

17

o
c-
o

m

o

IJJ

1.0

0.9

0.8

0.7

Figure 2

PARACR-FPP Efficiency on Base

0.6 , ! , I i I i I

0 2 4 6 8

Case

I

o

Number of CPUs

The key to parallel performance in this algorithm is the very long

vector length. Since the system size of the base case (65536) is exactly

divisible by 512, the parallel work can be divided evenly among the 8

CPUs while keeping the vector units of each CPU completely filled.

The large number of instruction issue delays due to memory references

do not present a severe bottleneck for this algorithm because

computations can proceed in other parts of the CPU, such as the
functional units.

4.3 FPP Evaluation

This section discusses the performance of FPP by showing, in Table 6,

the speedup of the PARACR as a function of problem size. Section 3.3
defines the Table 6 column labels.

18

Table 6

Parallel 8-CPU Y-MP Performance of the PARACR

System Size Pct- Vector Smax Smeas Pct Parallel
2"'14 97.78 6.92 5.88 94.84

2"'15 97.87 6.96 6.03 95.33

2"'16 97.93 6.99 6.14 95.66

2"'17 97.96 7.00 6.31 96.18

2"'18 97.98 7.01 6.38 96.38

2"'19 97.99 7.02 6.39 96.41

The difference between the maximum speedup based on percent of

vector operations and the measured speedup diminishes gradually as

the system size increases. The measured performance of the code

increases only slightly with problem size since even the smaller cases

have large vector lengths. The table indicates that FPP has extracted

essentially all of the parallelism available, especially at the longer

vector lengths. As noted previously, the clearing loop in the algorithm

contains insufficient work for parallel partition by FPP, so this loop

reduces parallel efficiency. The high degree of parallelism exhibited by

this algorithm implies that a block cyclic solver may be more effective

than the Gaussian solver in executing parallel solutions for two-
dimensional NAS CFD codes.

19

5.0 Alternating Direction Implicit Algorithm

5.1 Code Description

The Alternating Direction Implicit (ADI) method forms an important

class of solution procedures on the NAS machines, especially in the

field of global circulation models (NASA, 1990). The ADI algorithm

employs an operator splitting technique to decompose the problem

into multiple one-dimensional subproblems. This decomposition

increases the stability of the original problem and affords a larger

timestep which, for most regular geometries, offsets the increased

number of arithmetic operations produced by decoupling the original

problem. The algorithm in the suite follows a standard

implementation (Press, et al., 1986), replacing the Gaussian solver

described therein by a power-of-2 cyclic reduction method (Section 4.0)

to solve the tridiagonal systems.

Similar to the SOR discussed in Section 3.0, the ADI code solves

Poisson's equation with coefficient arrays describing the geometry.
However, the SOR used a 3-dimensional cube whereas the ADI

employs a 2-dimensional rectangular grid. The ADI would employ the

same solution technique in three dimensions as it does in two

dimensions. Features enhancing parallelism include the cyclic

tridiagonal solver and the data parallelism of the algorithm. The

problem geometry also contributes to the parallelism by allowing

application of the same operations to points adjacent to the boundary.
Termination occurs when the calculation has reduced the error as

discussed in Section 3.

5.2 Code Performance

The base case treats a square with 1024 nodes per edge to give about 1

million points per grid. As with the SOR, the code contains arrays

providing the geometry coefficients. The HPM reports a flop-to-

memory access ratio of 0.95 and a vector length exceeding 63. The code

executes the 4 MW base case in 135 seconds, performing at 130

MFLOPS. Single processor performance data for the ADI are shown in
Table 7.

Table 7

Singletasked Y-MP Performance of the ADI
Size M W MFLOPS CPU seconds

256 0.3 122.9 5.0

512 0.9 126.5 25.0

1024 3.4 129.8 135.0

2048 12.9 131.5 759.4

20

The table shows only a small increase in vector performance with

system size. The overhead in the algorithm, notably the number of

calls to the solver and the scalar indexing in the solver, increase with

system size. Certain user optimizations such as inlining the solver and

improving the solver indexing, would improve code performance.

FPP constructed a parallel version from the vector version described

above by executing the filling and backfilling loops of the x-sweep and

the y-sweep in parallel. Calculations in the cyclic tridiagonal solver are

also performed in parallel. Synchronization of the processors occurs

after the filling loop of the x-sweep, at the end of 3 DO-loops in the

cyclic solver, after the backfilling loop of the x-sweep, after the filling

loop of the y-sweep, again at the end of 3 DO-loops in the solver, and

after the backfilling loop of the y-sweep. Thus, the parallel version

requires 10 CPU synchronizations at the end of each plane, 10 times the

number required by the SOR in Section 3. Even with the tridiagonal

solver brought into the main routine, FPP could not recognize that

each column of the x-sweep and each row of the y-sweep could execute

in parallel. The tool exposed useful parallelism only in the solver.

Although the SOR and ADI versions in this suite solve different

problems, other analyses (Cvetanovic, et al., 1990) on equivalently

optimized SOR and ADI algorithms have shown greater speedups for

the SOR than the ADI; however, for most problems, the ADI algorithm

will require less CPU time because it requires fewer iterations to

achieve convergence.

Table 8 shows base case parallel performance on increasing numbers

of CPUs. Section 2.1 defines speedup, efficiency, and serial fraction.

Table 8

Parallel Y-MP Performance of the Base Case ADI (1024"'2)

NCPU Elapsed Time Speedup Efficiency Serial Fraction
1 136.59 1.000 1.000 1.000

2 112.06 1.220 0.610 0.640

3 98.561 1.386 0.462 0.582

4 84.330 1.620 0.405 0.490

5 70.978 1.921 0.385 0.400

6 66.633 2.054 0.342 0.385

7 53.339 2.613 0.373 0.280

8 38.006 3.591 0.449 0.175

The following figure shows the efficiency of the FPP-generated

version of the ADI algorithm to be lower than the previously discussed

SOR algorithm and also lower than the tridiagonal solver used in the

ADI. The efficiency of the ADI is much lower than would be expected if

all vectorized floating point operations had been executed in parallel.

21

o
¢.
o

o

LU

1.0

0.8

0.6

0.4

Figure 3

ADI-FPP Efficiency on Base

0,2 | I I I

0 2 4 6 8

Case

Number of CPUs

Examination of the parallel performance with the Cray utility atexpert

indicated that insufficient work in certain parallel loops produced the

poor utilization of the extra processors. These parallel loops filled the

arrays for the tridiagonal solver and performed the backsubstitution

after the solver. The extra CPUs require some time to arrive at the

location in the code where parallel work is to be performed. If there is

only a small amount of parallel work, the master CPU may have done

it all, or maybe just one additional CPU is required. The fact that this

ADI solves a particularly simple equation in only one variable

exaggerates the parallel CPU utilization problem, but this difficulty has

surfaced in previous analyses of CFD codes (Bergeron, 1992).

Despite considerable user intervention, FPP could not recognize that

the x-sweep and the y-sweep could each execute in parallel. The tool

uncovered useful parallelism only in the solver. The inability to

expose higher level parallelism even on this simple code could be a

serious drawback for machines with larger numbers of CPUs. For large
numbers of processors, loops may contain an insufficient amount of

work to utilize all available processors and a coarser-grained partition

may be required to keep all processors busy. This inability may be

especially harmful to the many CFD codes which utilize the ADI

method to solve the Navier-Stokes equations.

22

The figure also shows that efficiency of the FPP-generated version of

the ADI algorithm decreases sharply to a minimum at 6 CPUs and

increases for 7 and 8 CPUs. The computational load was perfectly

balanced for 2, 4, and 8 CPUs.

5.3 FPP Evaluation

This section discusses the performance of FPP by showing, in Table 9,

the speedup of the ADI as a function of problem size. Section 3.3
defines the Table 9 column labels.

The table shows a decrease in the percentage of parallel code as the

square size increases from 256 to 512. The increased size allowed

satisfaction of a loop threshold test and FPP placed more DO-loops in

parallel for the 512 square source. However, the overhead

accompanying the parallel execution of these loops offset the decrease

in elapsed time from multiple CPUs executing the actual calculations.
The small amount of work contained in these DO-loops was essentially

completed by the master task, and the utilization of the extra CPUs

incurred synchronization overhead with little benefit. Section 2.2

indicated that the percent of parallel code was obtained from actual

performance measurements. Since the measured parallel performance

decreased, the amount of parallel code inferred from the performance
measurement also decreased.

The table also shows a small decrease in percent vectorization and a

large increase in the percent of parallel code as the square size doubles
from 512 to 1024. The increased size allowed satisfaction of additional

FPP loop threshold tests which resulted in parallelization of more DO-

loops. Execution of this code in singletasked mode on one CPU requires

execution of the additional scalar code accompanying the additional

parallel loops and this additional scalar code produces the decrease in

percent vectorization shown in Table 9. Parallel execution of these

additional DO-loops combined with the execution of other parallel DO-

loops (now made profitable by the increased square size) to increase the

percentage of parallel code from 3% to 82%.

Table 9

Parallel 8-CPU Y-MP Performance of the ADI

Square Size Pct Vector Smax Smeas Pct Parallel
256 97.52 6.82 1.10 10.11

512 97.72 6.90 1.04 3.96

1024 96.60 6.46 3.59 82.49

2048 97.85 6.95 4.15 86.74

The difference between the maximum speedup based on percent of

vector operations and the measured speedup diminishes somewhat as

the system size increases. While FPP has partitioned most of the vector

23

loops for parallel execution, loops with a small amount of work do not

execute in parallel fashion. As described above, CPUs require a finite

time for arrival and they may arrive after all work has completed. The

measured performance of the code increases strongly with problem size

primarily due to the increase in parallel work at the longer vector

lengths. The table indicates that FPP has extracted about 87% of the

parallelism available at the longer vector lengths. The short vector

lengths also prevent efficient parallel performance of the cyclic

reduction tridiagonal solver.

24

6.0 Multigrid Algorithm

6.1 Code Description

Multigrid solution techniques are an advanced form of relaxation

algorithm which allows NAS users to accelerate the convergence of

their CFD codes (NASA, 1990). Multigrid algorithms solve partial

differential equations by employing relaxation methods to dampen

high-frequency errors and by using multiple grids to allow an

inexpensive solution to low frequency errors. A simple two-grid

iteration technique begins by a number of relaxations on a fine grid

followed by a projection of the errors to a coarse grid. Relaxations on

the coarse grid are then followed by an interpolation back to the fine

grid. Three basic operations comprise the multigrid technique:

relaxation, projection, and interpolation.

The multigrid algorithm in the suite employs a 3-dimensional

version of a standard V-algorithm (McCormick, 1987) to solve

Poisson's equation on a power-of-2 cube. The base case employs 5 grids

with 2**7 points on the fine grid and 2**3 points on the coarse grid.

Consistent with the approach taken for the previous codes in the suite,

this effort provided an efficiently vectorized algorithm as input to the

automatic parallelization tool. The recursion present in a serial visit

with a Gauss-Seidel solver to all grid nodes dictated a red/black

ordering. A relaxation cycle includes separate visits to the red and the

black nodes using separate Gauss-Seidel solvers. For each grid in the

descending part of the V, the technique contains multiple relaxation

cycles and a projection. For each grid in the ascending part of the V-

cycle, the technique contains a relaxation on red nodes, multiple

relaxation cycles and an interpolation from the coarse black nodes to

the fine black nodes. Subroutines corresponding to the three multigrid

operators, i.e., relaxation, projection, and interpolation, consist of triple

DO-loops visiting either the red or the black nodes.

6.2 Code Performance

The base case treats a cube with 129 nodes per edge, which corresponds

to a problem size of about 1 million points. The singletasked version of

the code executed the 7 MW base case in 31 seconds, performing at 127

MFLOPS. The autotasker was unable to parallelize the triply nested DO-

loop of the Gauss-Seidel iteration because the red/black solver used the

outer index to identify the red and black nodes on each plane of each

grid. Full parallelism required manual replacement of the Gauss-Seidel

iteration with a Jacobi iteration; this more parallel version required 40

CPU seconds due to the additional memory access and reflected a 25%

performance degradation. The performance of the singletasked version

25

of the MGR suffered becausethe basecasedisplayed vector lengths of
only 54.

Table 10presents single processor performance data for the Jacobi
iteration version.

Table 10
Singletasked Y-MP Performance of MGR

Cube Size M W MFLOPS CPU seconds
33 1.6 35.6 1.6
65 5.3 64.1 7.5
129 7.2 99.7 39.8
257 56.0 115.0 280.0

The table shows a strong increase in vector performance with cube
size. The cube sizes in the table overstate the vector length because the
red/black solver divides the grid into two parts and halves the vector
length. Moreover, the multigrid algorithm operates on cubes of
various sizes, all of which are equal to, or smaller than, the cube size
characterizing the problem. Thus, cube sizesof 65, 129,and 257 display
hardware floating point vector lengths of 27, 54, and 63, respectively.

For the multigrid relaxation cycle described above, FPPconstructed a
parallel region by placing each iteration of the outer loop in parallel.
The red iteration employs only black points, which are themselves
constant during the red iteration. This technique decouples the
calculation of the red planes and, for the black iteration, decouples the
calculation of the black planes. For each color on a given grid,
calculations on each of the planes are performed in parallel with FPP
distributing one plane per processor. Synchronizations, amounting to
nine per grid, occur after all planes have been updated, i.e., at the end

of the outer loop. Convergence checking occurs in singletasked mode

because the program requested the maximum value of the error in

addition to updating of the global sum used for convergence.

Table 11 shows base case parallel performance on increasing numbers

of CPUs. Section 2.1 defines speedup, efficiency, and serial fraction.

Table 11

Parallel Y-MP Performance of the Base Case MGR

NCPU Elapsed Time Speedup Efficiency Serial Fraction
1 37.900 1.000 1.000 1.000

2 19.807 1.913 0.957 0.045

3 13.951 2.717 0.906 0.052

4 10.932 3.467 0.867 0.051

5 8.943 4.238 0.848 0.045

6 7.951 4.767 0.794 0.052

7 6.947 5.456 0.779 0.047

8 6.674 5.679 0.710 0.058

26

The table indicates an excellent speedup for the MGR algorithm. The

magnitude of the speedup is surprising because the coarse grid vector

lengths are quite small. Figure 4 shows that the efficiency of the FPP-

generated version of the MGR algorithm decreases monotonically as

the number of CPUs increases. The visiting of 5 different size grids by

the three multigrid operators precludes an efficiency increase of the

type observed for the ADI, which arises from a balanced computational
load.

o
¢,,
O

o

W

Figure 4

MGR-FPP Efficiency on Base Case

1.0

0.9

0.8

0.7

0.6 , I I I I I I I

0 2 4 6 8

Number of CPUs

The short multigrid vector lengths make inefficient use of the vector

floating point units and also produce a load imbalance because of

insufficient work for multiple processors. The reason for the high

efficiency is that the parallel version executes a large amount of scalar

code in parallel. The scalar code arises from the integer offsets required

to obtain the locations of the red and black nodes on the various grids

comprising the multigrid scheme.

6.3 FPP Evaluation

This section discusses the performance of FPP by showing the speedup

of the MGR as a function of problem size. Section 3.3 defines the Table
12 column labels.

27

Table 12

Parallel 8-CPU Y-MP Performance of MGR

Nodes/Edge Pct Vector Smax Smeas Pct Parallel
33 53.22 1.87 2.05 58.60

65 69.35 2.54 4.85 90.73

129 81.88 3.53 6.18 95.78

257 87.66 4.29 6.82 97.52

The table indicates that the FPP-extracted parallelism exceeds the

vector-parallelism. The reason for this anomaly is that the large

amount of scalar work spent in calculating node indices can be

performed in parallel. The measured performance of the code increases

dramatically with problem size due to longer vector lengths and
smaller load imbalance effects.

The replacement of the Gauss-Seidel iteration with the Jacobi

iteration, as required by full parallelism, negates the requirement for

red/black ordering. Rewriting the algorithm with a standard Jacobi

solver should lead to an improved convergence rate with longer vector

lengths and greater parallelism.

28

7.0 Shallow Water Model

7.1 Code Description

Codes employing explicit timestepping of CFD equations are used by

many NAS users, especially for treating rate-dependent phenomena,
such as combustion and other chemical reactions (NASA, 1990). The

finite difference equations for the shallow water model (SWM) employ

explicit timestepping and space discretization based on Taylor

expansions to represent computations employed in atmospheric

modelling. The two-dimensional SWM equations are a system of three

equations in three unknowns, the x-velocity, the y-velocity and the

height of the fluid. The current formulation as presented by Sadourney

(1975) and implemented by Hoffman, et al. (1986), conserves the mean

square vorticity, or enstrophy. For stability in long-term atmospheric

modelling, enstrophy seems to be a more important invariant than

energy.

SWM employs a staggered leapfrog method to advance the conserved

quantities in time. Double DO-loops sweeping over the entire grid

contain the bulk of the calculation. The first double DO-loop spatially

updates mass fluxes and the velocity potential; the second one

integrates the mass and momentum equations; the final double DO-

loop performs a time filtering for stability. Application of periodic

boundary conditions occurs after each of the double DO-loops.

Termination occurs upon completion of a specified number of

timesteps.

Application of periodic boundary conditions and use of a regular

geometry introduces a high degree of parallelism into the code. The

shared memory architecture of the Y-MP facilitates implementation of

these boundary conditions, but a distributed memory architecture

would require additional message-passing to transfer data from one

boundary node to another.

7.2 Code Performance

This section discusses the singletasked performance of the SWM and

the parallel performance of the base case. Consistent with a 1 million

point grid discussed in Section 1, the base case treats a square with 1024

nodes per side. The code executes the 15 MW base case in 304 seconds,

performing at 222 MFLOPS. HPM data indicates vector lengths

exceeding 63 and a flop-to-memory access ratio of 1.46, a ratio

substantially greater than 1.0. The excellent SWM vector performance

arises from the explicit nature of the time integration which calculates

the new value at a point as the old value plus contributions from only

the nearest neighbors. Since this algorithm visits the nodes in a

29

sequential order, the CPU is able to store data temporarily in registers

instead of fetching data from memory. Table 13 shows singletasked

performance as a function of problem size.

Table 13

Singletasked Y-MP Performance of the SWM

Square Size M W MFLOPS CPU seconds
128 0.3 217.7 4.8

256 1.0 221.3 18.9

512 3.8 222.5 75.6

1024 14.8 222.3 303.5

2048 58.9 222.0 1200.3

The table shows only a small increase in vector performance with

increasing square size. As shown in Table 15, the fraction of floating

point operations performed in vector mode increases very slowly with

the increase in problem size. Since the vector units were filled at fairly

small problem sizes, the performance remains constant with size.

FPP constructed a parallel version from the vector version described

above by creating parallel regions for each of the 3 outer loops. Thus,

the 8 CPUs could concurrently execute iterations of the first outer loop

until all iterations were complete, then synchronize, and go on the

next outer loop. The code required singletasked initialization of

pressures and velocities and single CPU application of the periodic

boundary conditions.

Table 14 shows base case parallel performance on increasing numbers

of CPUs. Section 2.1 defines speedup, efficiency, and serial fraction.

Table 14

Parallel Y-MP Performance of the Base Case (1024"'2) SWM

NCPU Elapsed Time Speedup Efficiency Serial Fraction
1 296.000 1.010 1.010 1.000

2 152.000 1.967 0.984 0.017

3 102.000 2.931 0.977 0.012

4 77.000 3.883 0.971 0.010

5 62.000 4.823 0.965 0.009

6 52.000 5.750 0.958 0.009

7 45.000 6.644 0.949 0.009

8 41.000 7.293 0.912 0.014

Since the number of outer iterations is divisible by 64, the CPUs can

execute an integral number of outer loop iterations, thus perfectly

balancing the computational workload and keeping the vector

pipelines filled.

Figure 5 shows that the efficiency of the FPP-generated version of the

SWM algorithm decreases smoothly through 7 CPUs and then

3O

decreases sharply at 8 CPUs. According to atexpert, this decrease arises

from a load imbalance generated by the singletasked regions. As the

number of CPUs increase and the elapsed time decreases, this

imbalance exerts a greater influence because the fraction of time spent

in singletasked mode increases.

Figure 5

SWM-FPP Efficiency on Base Case

o
t-
O

o

q,.

ILl

1.00

0.95

0.90

0.85

0.80 i I i I i I , I

0 2 4 6 8

Number of CPUs

7.3 FPP Evaluation

This section discusses the performance of FPP by showing, in Table 15,

the speedup of SWM as a function of problem size. Section 3.3 defines
the Table 15 column labels.

Table 15

Parallel 8-CPU Y-MP Performance of the SWM

Square Size Pct Vector Smax Smeas Pct Parallel
128 97.12 6.67 3.28 79.45

256 97.39 6.76 6.57 96.90

512 97.51 6.81 7.69 99.42

1024 97.58 6.84 7.84 99.70

2048 97.61 6.85 7.95 99.92

31

The table indicates that the FPP-extractedparallelism exceedsthe
vector-parallelism. The reason for this anomaly is that the large
amount of scalar work spent calculating node indices was also
performed in parallel. The table indicates that this algorithm performs
well at all problem sizes.

32

8.0 Discussion

The codes presented to the Cray Fortran PreProcessor (FPP) perform

well on single CPUs of the Cray Y-MP. Since four of the codes (SWM is

the exception) solve simple problems involving only a scalar field, the

codes lack computationally rich DO-loops and would display higher

MFLOP rates on problems involving vector-field solutions. However,

all codes displayed reasonably long vector lengths and high fractions of

vector operations. These characteristics presage favorable loop-level

parallel performance because they indicate data independence and large

amounts of parallel work.

Although FPP produced parallel versions of all vectorized codes with
no user intervention, creation of efficient parallel programs did require

some minor modifications to the algorithms. Since the codes were

small, a simple review of the FPP output could reveal whether the

preprocessor had created an efficient parallel program. This review

involved simply scanning the outer computational loops for the
construct "DO PARALLEL". If this construct preceded the main loop,

then FPP had created a highly parallel region. An additional

examination was required to verify that FPP had obtained the best

possible parallel region.
In some cases, FPP generated these highly parallel regions, but

execution on 8 CPUs did not lead to factor-of-eight speedups in these

loops. The Cray utility atexpert was quite helpful in providing reasons

for less-than-expected parallel performance. The following paragraphs

discuss both the requirements of FPP for code rewriting and the role of

atexpert in resolving performance questions.

8.1 FPP Performance

NAS users typically employ FPP to parallelize vectorized code

involving explicit solvers, relaxation algorithms, and implicit solvers.

The following discussion reflects lessons learned from the parallel

suite with these three general algorithms.

Explicit Solvers

The SWM code used a standard explicit algorithm in which the new

values at each node depend only on the old values and those of the

nearest neighbors. SWM performs the same operations at all grid

points; this procedure defines a data parallel algorithm. SWM

singletasked regions involve initial conditions and the periodic

boundary conditions.

Given a program with such high potential parallelism, FPP produced

a program with high measurable parallelism. FPP required no vector

33

source code modifications to cast all major DO-loops into parallel form.

The singletasked regions did little to retard parallel performance, but

atexpert indicated possible performance degradation with greater-than-
8 CPU execution (Section 8.2).

Although practical CFD problems involve extra zones due to fluid

property differences and extra terms arising from viscosity effects,

explicit methods can treat all zones in similar fashion. The experience

with the SWM algorithm indicates that FPP should generate efficient

parallel code from those NAS programs employing explicit solution
algorithms.

Relaxation Algorithms

The SOR and MGR vectorized iterative solvers employed red/black

schemes, implemented in the case of the SOR with indirect addressing,

and implemented in the case of MGR with indexing offsets.

Given the vector version of SOR, FPP was unable to construct parallel

loops due to an index dependency. Replacement of the nested loop

with a single loop containing a simpler indexing scheme allowed the

generation of parallel outer DO-loops.

As with the SOR, an index dependency prevented FPP from

constructing parallel loops for MGR. The use of SOR-like indirect

addressing was possible, although MGR's use of five different

relaxation grids would have required five different addressing arrays.

Substitution of a Jacobi-like iteration allowed FPP to generate parallel
code in the MGR solver.

In the case of the relaxation schemes with moderate to high potential

parallelism, FPP was unable to produce a program with high

measurable parallelism. These vectorized relaxation schemes required
a few hours of additional effort to obtain more parallel solvers with
FPP.

NAS user codes may have the same or similar problems because the

logical decoupling required to generate vectorized relaxation

algorithms does not always lead to the complete independence
required for parallelism.

Implicit Solvers and Algorithms

Implicit schemes employ global solvers to obtain the exact solution of

the system at a given timestep, and efficient parallel performance

requires both a highly parallel solver and highly parallel pre-solver

routines to assemble the left-hand and right-hand sides.

The PARACR code, exemplifying a shared memory global solver,

employed a modification to the standard odd-even cyclic reduction to

provide an algorithm with high potential parallelism. FPP

recommended a reduction in the number of DO-loops to reduce the

34

number of synchronizations. This modification required about 2 hours

of user effort. Given a program with high potential parallelism, FPP

produced a program with high measurable parallelism.
The ADI code combined a standard solution algorithm with the

parallel cyclic reduction solver for the tridiagonal equations. FPP

discovered useful parallelism only in the solver and could not

recognize the parallelism in the x-sweeps and y-sweeps. While the

inability of FPP to provide efficient parallel execution outside of the

solver was due to computationally sparse DO-loops, its inability to

parallelize the ADI at a higher level was more serious. Given a

program with high potential parallelism, FPP produced a program with

only moderate measurable parallelism.

Current NAS implicit CFD codes loosely couple the task of solving the

system of equations to the task of assembling the left and right hand

sides. Concerns for parallelism may not influence the data structures

and their access patterns. For these codes, the current form of FPP may

not be able to uncover parallelism at high levels. Since larger numbers

of CPUs require higher fractions of parallel code to maintain the same

level of efficiency, the inability to recognize parallelism at a higher

level may limit FPP's future usefulness.

8.2 ATEXPERT Insights

FPP routinely generated highly parallel regions for codes in the suite,

but wall clock measurements during dedicated Y-MP execution

confirmed the atexpert predictions of less than factor-of-eight speedups

in several of these regions. This section discusses several instances of

the help provided by this tool. While in every instance, atexpert

provided plausible reasons for performance anomalies, the tool

required the user to review its output quite carefully. A cursory

examination of results with poorly conceived questions provided little

insight.
In the ADI code, atexpert indicated that the extra CPUs required a

significant amount of time to traverse the various "if" statements

between the top of a subroutine and the parallel work. Since the master

CPU will be working while the extra CPUs are finding their way to the

parallel work, parallel loops must contain a significant amount of work
or else the master will have reduced the parallel work available for the

extra CPUs.

SWM measured efficiency displayed a sudden downturn as the

number of CPUs increased to 8. Atexpert indicated the reason was the

growing influence of the singletasked periodic boundary conditions.

Atexpert indicated memory conflicts would degrade the parallel

performance of the relaxation schemes, but since the arrays were

already carefully dimensioned, there seemed to be little improvement

possible in these routines.

35

The overall experience with atexpert was quite pleasing, and its clear
presentation format represents the state of the art in this area. The tool

could profit from the addition of code to supply the user with

performance-improving suggestions. For example, in ADI, atexpert
could recommend more modular coding to allow CPUs to enter

parallel regions at the top of the subroutine. In SWM, atexpert could

suggest a rewriting of the boundary condition update to maximize
parallelism.

36

9.0 Conclusions

Although supercomputers increasingly employ multiple CPUs to

provide greater computing power, the burden of harnessing this power

through parallel processing lies with the programmer. Automatic

parallelization tools promise to make the programmer's task easier, but
the tools must be able to discover a wide range of parallel constructs.

This report has described a suite of codes for testing automatic

parallelization and has discussed the ability of Cray's loop-level

parallelizer, FPP, to generate measurably parallel code.
The codes in the suite provide a good basis to evaluate automatic

parallelization tools because they permit a large amount of parallel
execution and because they contain several levels of parallelism. Most

of the codes can perform efficiently with loop-level parallelism, but at
least two of the codes, the SOR and the ADI, can execute in parallel at a

higher level. The simplicity of the codes and utilization of well-known
numerical methods allow higher levels of parallelism, either manually

by user modification or automatically by software preprocessors.

The Cray automatic parallelization tool, FPP, exploited much of the

loop-level parallelism in the codes comprising the test suite.

Dependencies, introduced by the use of indirect addressing for

vectorization, prevented generation of parallel code for some of the

solvers. For the codes in the suite, FPP was unable to diagnose

parallelism at a level higher than a DO-loop and Cray should place

more emphasis on this aspect of parallelism. FPP performs a valuable,

supplementary role as a worksaver. However, the effectiveness of the

tool is proportional to the skill of the analyst.

Cray also provided an insightful parallel performance evaluation tool,

atexpert, to complement FPP. In every case, this tool provided plausible

reasons for parallel performance deficiencies. Use of atexpert should

almost certainly increase the skill of the analyst. Currently available

performance tools for distributed memory machines provide much

data and little insight. NAS could make a contribution in this area by

creating software which would diagnose performance problems on

distributed memory machines.

For the parallel suite, future work will involve first the manual
transformation of the codes into sources suitable for execution on a

highly parallel machine. This effort may well involve more than loop-

level transformations. The experience of manually transforming the

codes will enable an informed evaluation of automatic tools on highly

parallel machines. Future work will also involve porting these codes to
the C-90. This effort should clarify whether loop-level parallelization

can operate effectively on systems with moderate numbers of CPUs.

37

10.0 References

Adams, L., and Ortega, J. M., 1982. "A multi-color SOR method for

Parallel Computation", in Proceedings of the 1982 Conference on
Parallel Processing,, pp. 53-56.

Bailey, D. H., et al. 1991. "The NAS Parallel Benchmarks-Summaries

and Preliminary Results," in Proceedings of the Supercomputing "91
Conference, pp. 158-165.

Bailey, D. H., 1992. "Misleading Performance in the Supercomputing

Field," in Proceedings of the Supercomputing "92 Conference, pp. 155-
158.

Bergeron, R. J., 1992. "Autotasking STAGE-2," NAS Technical Report
RND 92-014, Ames Research Center, Moffett Field CA, 1992.

Buzbee, B.L., Golub, G.H., and Nielson, C. W., 1970. "On direct methods

for solving Poisson's eqations," SIAM Journal of Numerical Analysis 7
pp. 627-656.

Chen, D., and Pase, D., 1991. "An Evaluation of Automatic and

Interactive Parallel Programming Tools," in Proceedings of the
Supercomputing '91 Conference, pp. 412-423.

Cray Research Inc. 1988. Cray Y-MP and Cray X-MP Multitasking

Programmer's Manual, Pub. No. SR-022E, Cray Research Inc.,1988.

Cray Research Inc. 1990. UNICOS Performance Utilities Reference
Manual, Pub. No. SR-2040 6.0, Cray Research Inc.,1990.

Cray Research Inc. 1991. CF77 Compiling System, Volume 4: Parallel

Processing Guide, Pub. No. SG-3074 5.0, Cray Research Inc.,1991.

Cvetanovic, Z., Freedman, C. G., Nofsinger, C. 1990."Efficient

Decomposition and Performance of Parallel PDE, FFT, Monte Carlo

Simulations, Simplex, and Sparse Solvers," in Proceedings of the

Supercomputing "90 Conference, pp. 455-464.

Hockney, R. and Jesshope, C. 1988. Parallel Computers 2.,Bristol,
England: Adam Hilger Ltd.

38

Hoffman, G.R., Schwartztrauber, P.N., and Sweet, R.A. 1986. "Aspects

of Using Multiprocessors in Meteorological Modelling" in

Multiprocessing in Meteorological Models, G.R. Hoffman and D.F.

Snelling, eds, Springer-Verlag, New York, NY.

Karp, A. and Flatt, H. P. 1989. "Measuring Parallel Processor
Performance," Communications of the ACM,33,5 (May 1990) 539-543.

Kumar, S. P., 1989. "Solving Tridiagonal Systems on the Butterfly

Parallel Computer," in International Journal of Supercomputing

Applications, 3 (1) Spring 1989, pp. 75-81.

Lambiotte, J.J. 1975. "The Solution of Linear Systems on a Vector

Computer," Ph.D. dissertation, Univ. of Virginia, Charlottesville.

McCormick S.F.,editor, 1987. Multigrid Methods, SIAM, Philadelphia,

Pa.

National Aerodynamics and Space Administration (NASA), 1990. NAS
Technical Summaries, Ames Research Center, Moffett Field, California

94035-1000.

Ortega, J. M. and Voigt, R. G. 1985. Solution of Partial Differential

Equations on Vector and Parallel Computers, SIAM, Philadelphia, Pa.

Peterson, V., and Balhaus, W. 1987. "History of the Numerical

Aerodynamics Program", in Supercomputing in Aerospace, P. Kutler

and H. Yee, editors, NASA Conference Publication 2454.

Press, W. H., B.P. Flannery, S.A. Teulolsky, and W. T. Vetterling 1986.

Numerical Recipes, Cambridge University Press, Cambridge.

Pulliam, T. H. and Chausee, D. S. 1981. "A Diagonal Form of the

Implicit Factorization Algorithm," Journal of Computational Physics,

39 (1981) pp. 347-363.

Sadourney, R., 1975. " The Dynamics of Finite-Difference Models of the

Shallow Water Equations," J. Atmos. Sci., 32, pp. 680-689.

Sweet, R. A., 1974. "A generalized cyclic-reduction algorithm," SIAM

Journal of Numerical Analysis , 11 pp. 506-520.

Vu, P., and Yang, C., 1988. "Comparing tridiagonal solvers on the

CRAY X-MP/416 System", in Cray Channels, Winter,1988.

NAS
I

• "_._i¢-_-_ "_'I" :_, __'._; -,. .-. _. ,.,.;: ::: : _':" -: , ,:e;;:';::' -:- _::!: : " :-:.:_ • _; _:.::.:!:!:i:::i:!:';::::-::_£ii_!]:!ii!!i

" ..._ : ': _ ..: " !_ "i_ i : ..! : ._!!- _'!_ _i!•.... _;;+i._#!_i!_!:!_-_

Title:
Automatic Para]le]ization Too] E[_icJency:

FPP/Atexpert Case Studies
I i I

Author(s):

Reviewers:

"! have carefully and thoroughly reviewed this

technical report. I have worked with the

author(s) to ensure clarity of presentation and

technical accuracy. I take personal

responsibility for the qua!ity of this document."

Signed: J_'-"

Name:

Signed:

Name:

Date:

Branch Chief:

Approved: _

TR Number:

,vb-13 - ol

Important: Put this form as the last page in the published Tech Report.

